SUPER PRESSURE BALLOON PERFORMANCE ESTIMATION 14 JANUARY 2024

SUMMARY

This documents derives the equations necessary and provides the Matlab code to compute basic performance metrics for small super pressure balloons. Based on the knowledge of the gas used, the mass of the balloon material and payload, the fully inflated volume of the balloon, and the chosen free lift weight, an estimate of the balloon's final float altitude and internal vs ambient pressure difference is computed.

CONTEXT

A super pressure balloon should not be confused with a high altitude balloon. A hight altitude balloon is characterized by it's constantly expanding volume as it rises - maintaining an internal vs. ambient pressure equilibrium until the balloon bursts, typically a few hours after launch. A super pressure balloon by comparison is made with a non-stretch material like foil or mylar that once the gas expands to fill its volume, must be able to withstand a pressure difference at the balloon's float altitude. By carefully choosing the balloon's volume, payload mass, and free lift weight, it is possible to settle at a float altitude where the internal pressure of the balloon doesn't exceed its hoop stress limit.

LIMITATIONS

This document only provides an estimate of the performance metrics (float altitude and internal vs. ambient balloon pressure difference) based on the standard atmosphere. Real life conditions will likely vary significantly from the standard STP reference values used in these calculations, but it should provide a good starting point. Additional refinement could be empirically developed by measuring pressure and temperature while in flight.

CONSTANTS

 R_{He} Gas Constant (2077 for Helium) $J \cdot Kg^{-1}K^{-1}$

KNOWN VARIABLES

$V_{balloon}$	Fully Inflated Balloon Volume	m^3
m_f	Free Lift Weight	Kg
m_p	Payload Mass	Kg
m_h	Balloon Material Mass	Kg

UNKNOWN VARIABLES

m_{He}	Mass of Needed Gas (Helium) to Satisfy $\emph{m}_{\it f}$	Kg
V_{He}	Volume of m_{He} of Gas (Helium)	m^3
h_i	Fully Inflated Balloon Altitude	m
h_f	Final Balloon Float Altitude	m
D_{air}	Density of the Air that Corresponds to the Balloon's Altitude. Reverse Lookup Altitude Based on STP Table.	$Kg \cdot m^{-3}$
P_f	Balloon's Internal Pressure at Float Altitude	Pa
ΔP_f	Pressure Difference Between Balloon's Internal Pressure and Ambient Pressure	Pa

APPROACH

In order to understand how we compute the final float altitude, we need to understand the 3 principal phases a super pressure balloon goes through after launch.

- PHASE 1: RISE STATE During this phase the balloon is nowhere near fully inflated. The volume of Helium in the balloon is substantially less than what the balloon can handle. The internal pressure is the same as the ambient pressure. Because we have chosen a free lift weight (m_f), the buoyant force (F_b) is greater than the force of gravity (F_g) and the balloon will rise.
- Phase 2: Fully Inflated State During this phase the balloon has reached its fully inflated state. The volume of Helium in the balloon is equivalent to what the balloon can handle. The internal pressure is the same as the ambient pressure. However, the balloon will still continue to rise because F_b still exceeds F_g . As the balloon continues to rise, F_b decreases while the pressure of the balloon ($P_{balloon}$) increases.
- Phase 3: Float Altitude State Eventually F_b and F_g cancel each other out, and the balloon reaches a steady state altitude that corresponds to a specific atmospheric density. From this atmospheric density, the altitude can be computed from a standard atmosphere table.

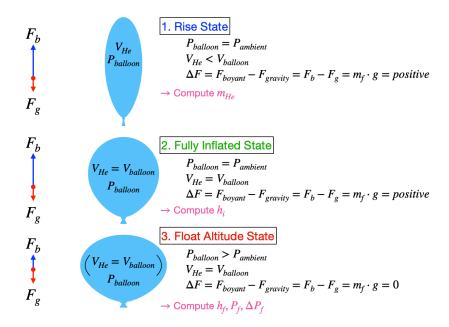


Figure 1. Phases of a Super Pressure Balloon

STEP 0. Pick Free lift weight m_f in Kg.

STEP 1. Compute Helium required to meet m_f (in terms of both Mass (m_{He}) and Volume (V_{He}).

Establish Equations,

$$\begin{split} \Delta F &= F_{boyant} - F_{gravity} = F_b - F_g \\ \Delta F &= m_f \cdot g \\ F_b &= V_{He} \cdot D_{air} \cdot g \\ F_g &= (m_b + m_p + m_{He}) \cdot g \\ \\ \text{Note, } V &= (m \cdot R \cdot T)/P \end{split}$$

Compute answers,

$$\begin{split} \Delta F &= m_f \cdot g = F_b - F_g \\ m_f \cdot g &= \left[V_{He} \cdot D_{air} \cdot g \right] - \left[m_b + m_p + m_{He} \right] g \\ V_{He} &\to (m_{He} \cdot R \cdot T) / P \\ m_f &= \left[\frac{m_{He} \cdot R_{He} \cdot T \cdot D_{air}}{P} \right] - m_b - m_p - m_{He} \\ m_f &+ m_b + m_p = \left[\frac{m_{He} \cdot R_{He} \cdot T \cdot D_{air}}{P} \right] - m_{He} \\ \end{split}$$

$$m_{He} = \frac{m_f + m_b + m_p}{\left[\frac{R_{He} \cdot T \cdot D_{air}}{P} - 1\right]}$$

$$V_{He} = \frac{m_{He} \cdot R_{He} + T}{P}$$

STEP 2. Compute Fully Inflated Altitude

Establish Equations,

$$\Delta F = F_{boyant} - F_{gravity} = F_b - F_g = m_f \cdot g$$

$$F_b = V_{He} \cdot D_{air} \cdot g$$

$$F_g = \left[m_b + m_p + m_{He} \right] \cdot g$$

Compute answers,

$$m_f \cdot g = \left[V_{He} \cdot D_{air} \cdot g \right] - \left[m_b + m_p + m_{He} \right] g$$

$$V_{He} \rightarrow V_{balloon}$$

$$m_f = \left[V_{balloon} \cdot D_{air} \right] - \left[m_b + m_p + m_{He} \right]$$

$$m_f + m_b + m_p + m_{He} = V_{balloon} \cdot D_{air}$$

$$\begin{split} D_{air} &= \frac{m_f + m_b + m_p + m_{He}}{V_{balloon}} \\ P_{balloon} &= P_{ambient} \mid_{D_{air}} \\ h_i &\leftarrow STP \mid_{D_{air}} \end{split}$$

$$P_{balloon} = P_{ambient} \mid_{D_{air}}$$

$$h_i \leftarrow STP \mid_{D_{air}}$$

STEP 3. Compute Float Altitude

Establish Equations,

$$\Delta F = F_{boyant} - F_{gravity} = F_b - F_g = 0$$

$$F_b = V_{He} \cdot D_{air} \cdot g$$

$$F_g = \left[m_b + m_p + m_{He} \right] \cdot g$$

Compute answers,

$$F_b = F_g$$

$$\left[V_{He}\cdot D_{air}\cdot g\right] = \left[m_b + m_p + m_{He}\right]g$$

$$V_{He} \rightarrow V_{balloon}$$

$$V_{balloon} \cdot D_{air} = m_b + m_p + m_{He}$$

$$D_{air} = \frac{m_b + m_p + m_{He}}{V_{balloon}}$$

$$\begin{split} D_{air} &= \frac{m_b + m_p + m_{He}}{V_{balloon}} \\ P_f &= \frac{m_{He} \cdot R_{He} \cdot T_{ambient} \mid_{D_{air}}}{V_{balloon}} \\ \Delta P_f &= P_f - P \mid_{D_{air}} \\ h_f \leftarrow STP \mid_{D_{air}} \end{split}$$

$$\Delta P_f = P_f - P \mid_{D_{air}}$$

$$h_f \leftarrow STP \mid_{D_{air}}$$

MATLAB CODE

Two Matlab functions and one script is provided to help estimate the performance of a super pressure balloon.

- isa_search.m a function that does a reverse lookup of Matlab's Aerospace Toolbox standard atmosphere table to find the altitude that corresponds to a specific density. If the Aerospace Toolbox is not available, manual lookup from an STP table is necessary. This function is transparent to the user and is called by b_calc.m
- b_calc.m a function that computes key balloon performance metrics. This function calls isa_search.m.
- b_calc_demo.m An example script that shows how to use the b_calc function. Calling b_calc over a span of several payload sizes ranging from 5 grams to 100 grams, the figure below is computed.

b_calc(2077, 1.225, 101325, 288, 0.0024, 0.037, mass, 0.1);

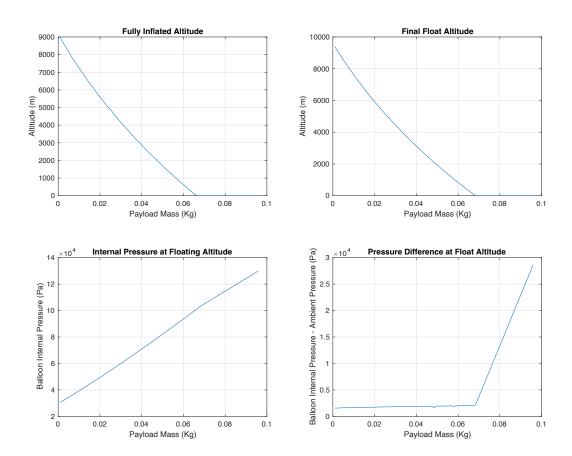


Figure 2. Example of 0.1 m^3 Helium Foil Balloon with Varying Payload Mass

Matlab Code 1 - b_calc_demo.m

```
0.0024, 0.037, mass(1,n), 0.1);
                                                                                                                                                                                                                                                                                                                                                                                       volume (m^3) (0.1m^3 or 0.25m^3 for example)
                                                                                                                                                                                          Gas Constant in J/ (Kg*K) (2077 for Helium, 4124 for Hydrogen) Atmospheric Density at launch site in Kg/m^3 (1.225 for SS1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              and
                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Fully inflated balloon altitude (meters)
Final balloon float altitude (meters)
Balloon's internal Pressure at floating altitude (Pa)
Pressure difference between balloon's internal pressure
                                                                                                         D_launch_site, P_launch_site, T_launch_site,
                                                                                                                                                                                                                                            Atmospheric Pressure at launch site in Pa (101325 for Atmospheric Temperature at launch site in Kelvin (288 Desired Free lift weight (Kg) (0.0024 Kg for example) Mass of balloon material (Kg) (0.037 Kg for example) Mass of Payload (Kg) (0.015 Kg for example)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       % --- Enter your modified values into this function call --- [h_{-1}(1,n),\ h_{-1}(1,n),\ p_{-1}(1,n),\ delta_p_{-1}(1,n)] = b_calc(2077,\ 1.225,\ 101325,\ 288,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   - min mass) / (steps-1));
                                                                                                     h_f, p_f, delta_p_f] = b_calc(R_gas,
Example
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Plot Range & Fidelity
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       p_f = zeros(1, steps);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   mass(1,n) = n^*((max mass))
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        Compute Balloon
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     mass = zeros(1, steps);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    = zeros(1,steps);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            = zeros(1,steps);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   = zeros(1,steps);
                                                                                                                                                                                                                   D_launch_site
P_launch_site
T_launch_site
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          min_mass = 0.005;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     max_mass = 0.1;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          = 1:steps
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               steps = 101;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          \Box
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        clear
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Z
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Д
```

```
% ---- Plot Data ----
subplot(2,2,1)
title("Fully Inflated Altitude")
xlabel("Payload Mass (Kg)")
ylabel("Altitude (m)")
grid on;
subplot(2,2,2)
plot(mass, h_f)
title("Final Float Altitude")
xlabel("Payload Mass (Kg)")
ylabel("Altitude (m)")
grid on;
subplot(2,2,3)
plot(mass, p_f)
title("Internal Pressure at Floating Altitude")
xlabel("Payload Mass (Kg)")
ylabel("Balloon Internal Pressure (Pa)")
grid on;
subplot(2,2,4)
plot(mass, delta_p_f)
title("Pressure Difference at Float Altitude")
xlabel("Payload Mass (Kg)")
ylabel("Pressure Difference at Float Altitude")
xlabel("Payload Mass (Kg)")
ylabel("Balloon Internal Pressure - Ambient Pressure (Pa)")
grid on;
```

Matlab Code 2 - b_calc.m

```
v_balloon)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          Final balloon float altitude (meters)
Balloon's internal Pressure at floating altitude (Pa)
Pressure difference between balloon's internal pressure and ambient pressure
  m p,
  m b,
  m f,
                                                                                                                                                                                                                                                                    Constant in J/(Kg*K) (2077 for Helium, 4124 for Hydrogen) subheric Density at launch site in Kg/m^3 (1.225 for SSL)
  T_launch_site,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Fully inflated balloon volume (m^3) (0.1 m^3 in example)
                                                                                                                                                                                                                                                                                                                                         Atmospheric Pressure at launch site in Pa (101325 for Atmospheric Temperature at launch site in Kelvin (288
                                                                                                                                                                                                                                                                                                                                                                                                     Desired Free lift weight (Kg) (0.0024 Kg in example)
                                                                                                                                                                                                                                                                                                                                                                                                                                    balloon material (Kg) (0.037 Kg in example)
P_launch_site,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                Payload (Kg) (0.015 Kg in example)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     - STEP 1: Compute Helium required to meet Free Lift Weight Design Crite = (m_f+m_b+m_p)/((R_gas*T_launch_site*D_launch_site)];
D launch site,
= b_calc(R_gas,
                                                                                             Compute key balloon
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     ambient, ~, P_ambient, ~] = atmosisa(h_f);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            f+m_b+m_p+m_gas)/v_balloon;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 = (m gas*R gas*T ambient)/v balloon;
ta p \bar{f} = p \bar{f} - P ambient;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   D_lookup = (m_b+m_p+m_gas)/v_balloon;
p_f, delta_p_f]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        = isa search(D lookup);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    f = isa_search(D_lookup);
function [h_i, h_f,
                                                                                                                                                                                                                                                                                                             D_launch_site
P_launch_site
T_launch_site
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            \begin{array}{ccc}
D\_lookup &=& (m\_\\
h\_i &=& isa\_sear
\end{array}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      m gas
```

Matlab Code 3 - isa_search.m

```
disp('Matlab R2023a allows for extended table up to 84,852 meters using atmosisa(rho_target,extended=true)');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ' Kg/m^3']);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Kg/m^3']);
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  disp(['Look up the row that corresponds to a density of: ', num2str(rho_target),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  ', num2str(rho_target),
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       disp('Matlab atmosisa() function does not support lookup above 20,000 meters');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      disp('to find the corresponding altitude, ambient pressure and temperature.');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         disp('to find the corresponding altitude, ambient pressure and temperature.');
                                                                                                        lookup of altitude from density in the Stanc s ISA Table is only good up to 20,000 meters.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           disp('You can still use the Standard Atmosphere Table by Hand');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           disp('You can still use the Standard Atmosphere Table by Hand');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               disp(['Look up the row that corresponds to a density of:
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Toolbox Installed');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      disp ('ERROR: Atmospheric Density < 0.0880 Kg/m^3');
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    if (license('test', 'aerospace_toolbox') == 0)
    disp('You do not have the Aerospace Toolbo
= isa search(rho target)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         % (0880) % =>
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Special Case - Alt >= (rho_target <= 0.0880
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  % Special Case - Alt <=
if (rho_target > 1.225)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      rho_target =
alt = 0;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            alt = 20e3;
function [alt]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      return;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         return;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   return;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               ;
0
=
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               alt
```